
Localizing Traffic Differentiation
Zeinab Shmeis

EPFL
Switzerland

zeinab.shmeis@epfl.ch

Muhammad Abdullah
EPFL

Switzerland
muhammad.abdullah@epfl.ch

Pavlos Nikolopoulos
EPFL

Switzerland
pavlos.nikolopoulos@epfl.ch

Katerina Argyraki
EPFL

Switzerland
katerina.argyraki@epfl.ch

David Choffnes
Northeastern University

United States
choffnes@ccs.neu.edu

Phillipa Gill
Google

United States
phillipagill@google.com

ABSTRACT
Network neutrality is important for users, content providers, poli-
cymakers, and regulators interested in understanding how network
providers differentiate performance. When determining whether a
network differentiates against certain traffic, it is important to have
strong evidence, especially given that traffic differentiation is illegal
in certain countries. In prior work, WeHe detects differentiation via
end-to-end throughput measurements between a client and server
but does not isolate the network responsible for it. Differentiation
can occur anywhere on the network path between endpoints; thus,
further evidence is needed to attribute differentiation to a specific
network. We present a system,WeHeY, built atopWeHe, that can
localize traffic differentiation, i.e., obtain concrete evidence that the
differentiationhappenedwithin theclient’s ISP.Our systembuildson
ideas fromnetworkperformance tomography; thechallengewesolve
is that TCP congestion control creates an adversarial environment
for performance tomography (because it can significantly reduce the
performance correlation on which tomography fundamentally re-
lies).We evaluate our system via measurements “in the wild,” as well
as in emulated scenarioswith awide-area testbed;we further explore
its limits via simulations and show that it accurately localizes traffic
differentiation across a wide range of network conditions. WeHeY’s
source code is publicly available at https://nal-epfl.github.io/WeHeY.

CCS CONCEPTS
•Networks→Network performance analysis.

KEYWORDS
Network Neutrality; Traffic Differentiation
ACMReference Format:
Zeinab Shmeis, Muhammad Abdullah, Pavlos Nikolopoulos, Katerina Argy-
raki,DavidChoffnes, andPhillipaGill. 2023. LocalizingTrafficDifferentiation.
In Proceedings of the 2023ACM InternetMeasurement Conference (IMC ’23), Oc-
tober 24–26, 2023, Montreal, QC, Canada.ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3618257.3624809

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’23, October 24–26, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0382-9/23/10. . . $15.00
https://doi.org/10.1145/3618257.3624809

1 INTRODUCTION
Network neutrality—the notion that network providers should not
differentiate between different applications and services—has been
an important topic of debate. While early work on the topic focused
on differentiation against BitTorrent traffic [10, 11], there is now
strong evidence that many network providers differentiate against
traffic from specific applications and/or services [23].

Neutrality is a divisive issue for the networking community. Some
equate its violation with harmful, even malicious, behavior; most
countries in Europe and Latin America, Canada, and several U.S.
states take this position and have enacted neutrality regulations.
Others argue that differentiation is part of a free economy [40]. De-
spite the myriad laws, rules, and opinions around neutrality, there
is widespread agreement that transparency is vital for consumers to
make informed and fair choices when selecting network providers.

Today, the most reliable test for differentiation against a given
application’s network traffic (e.g., a video streaming provider) is via
end-to-end throughput comparison. This is the approach taken by
WeHe [23], which comes with pre-recorded, made-in-the-lab, traces
for testing popular network services (e.g., streaming, VoIP). To test
for differentiation, theWeHe client and server replay both the orig-
inal trace and a version of the trace with the original bits inverted.
The latter retains packet sizes and timings from the original flows,
but obfuscates the payload, including whatever criteria a network
may be using to differentiate. If the bit-inverted replay achieves a
significantly different throughput than the original one over mul-
tiple trials, WeHe concludes that there is traffic differentiation for
the tested service somewhere on the path between server and client.

While WeHe does not assign blame when differentiation is de-
tected, it is largely assumed that the client’s Internet service provider
(ISP) is the cause 1. However, in principle, when two traffic flows
between the same server and client achieve different throughput,
the cause may lie anywhere on the network path. So, any claim that
an ISP differentiates against a given application and/or service must
come with harder evidence, especially given that differentiation is
illegal in certain jurisdictions.

We present WeHeY: a system for localizing traffic differentiation
within a client’s ISP. In particular, we presentWeHeY’s design and
evaluation; we have a prototype, built on top of WeHe, that we have
tested on real networks that apply traffic differentiation, butwe have
not yet released it toWeHe users. AfterWeHe detects differentiation
on a path to a client, WeHeY performs additional measurements

1In many cases (e.g., in the US), this can be confirmed with ground truth.

https://nal-epfl.github.io/WeHeY
https://doi.org/10.1145/3618257.3624809
https://doi.org/10.1145/3618257.3624809

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Zeinab Shmeis et al.

using the same client, analyzes them, and outputs one of two out-
comes: (a) it found evidence that the differentiation happens within
the client’s ISP; (b) it foundno such evidence and thus cannot provide
any additional information relative toWeHe.

In this work, we assume a classic “Internet tomography” [7] set-
ting: we need to reason about the behavior of a network (the client’s
ISP), butwe can only performmeasurements along end-to-end paths
that traverse this network. In general, tomography systems per-
formmeasurements along multiple intersecting paths and rely on
the performance relationship between these paths to reason about
individual links. At a high level, this is what WeHeY does, too: it
performsmeasurements along paths that converge inside the client’s
ISP and end at the client; it relies on the performance relationship
between these paths to reason about their common link sequence,
which belongs to the client’s ISP by construction.

Further, we assume no privileged access to ISP infrastructure and
thus must treat ISPs as black boxes. This way, our approach can
work across a wide range of ISPs. However, this also precludes us
from benefitting from state-of-the-art telemetry systems like Ever-
flow [38], which can accurately characterize a network’s behavior
and performance, partly because they benefit frommeasurements
collected directly at the network’s devices.

A key challenge we address in this work is that traffic differenti-
ation creates an adversarial environment for network tomography.
Informally, tomography relies on the fact that traffic flows crossing
a common network bottleneck experience similar performance; it
works well when it is able to capture this similarity with mathemati-
cal equations. However, we found that when a network bottleneck is
the result of trafficdifferentiation, it can lead to significant short-term
differences in loss rates that make it hard to capture performance
similarity and cause traditional tomography to fail.

WeHeY differs from classic network tomography in an impor-
tant way: it accurately detects the performance correlation between
flows that cross a common bottleneck, while being insensitive to
the absolute loss rates experienced by these flows. The reason it can
achieve this feature—whereas classic tomography cannot—is that it
does not seek to accurately characterize the behavior or performance
of links; rather, it seeks to accurately determine whether a particular
link sequence is a bottleneck for some traffic flows but not others.

We testedWeHeY on 5 real cellular networks that apply traffic
differentiation; for 4 of them, WeHeY managed to localize differ-
entiation to the target network in more than 89% of our tests. We
further studied WeHeY’s performance and limits via simulations
and a wide-area testbed with an emulated rate-limiter. These experi-
ments showed that it is robust to a wide range of network conditions
and incurs a false-positive rate of around 5%, even in extremely ad-
versarial scenarios. WeHeY’s source code is publicly available at
https://nal-epfl.github.io/WeHeY.

2 BACKGROUND
2.1 WeHe and Traffic Differentiation
WeHe. [23] tests whether a network provider provides differential
performance for a supported set of services (e.g., Skype, WhatsApp,
Webex, Netflix, Zoom, etc.). It consists of WeHe clients, installed on
devices of participatingusers, andWeHeservers, runningonglobally
distributed infrastructure (EC2 and M-Lab [21]). When the user

1

Edge ISP

s2

s1
lc

l1
l2

p1

p2

Figure 1: Example topology.

wishes to test for differentiation against a given service (e.g., Netflix),
the client contacts a WeHe server and initiates a test: the client
and server first replay an original copy of a prerecorded network
trace for the service, then a modified (bit-inverted) version of that
trace, which keeps the same packet sizes and inter-arrival times,
but destroys any original bit patterns in the payload (we call these
“bit-inverted” traces). The bit-inverted traces remove any packet
payload patterns that a DPI-based differentiation device might use
to identify traffic for differentiation, and thus, these traces serve
asWeHe’s “control” measurements. The client then compares the
end-to-end performance achieved by the two traces: It divides time
(replay duration) into 100 intervals and computes the throughput
achieved by each trace in each interval; for each trace, it builds the
CDF of the throughput values. Then, it compares the two CDFs with
a Kolmogorov-Smirnov test: if they are significantly different, it
outputs that there was traffic differentiation.

Differentiation Criterion. Li et al. [23] found that differentiation is
typically triggered by the presence of a (partial) domain name for
a targeted service, as determined from the unencrypted SNI TLS
header (or other plaintext fields in the TLS handshake). We note that
differentiation based on the server IP address is less common, as
CDN-hosted services can be located on a variety of IPs owned by
the CDN(s). This is why it is plausible that an ISP that differentiates
against traffic from certain services will also differentiate against the
corresponding original traces replayed byWeHe servers (because
the original traces preserve the SNI).

Differentiation and Loss. As far as we know, traffic differentiation
is typically implemented through rate-limiting and, in particular,
policing or shaping [13]. In general, a rate-limiter takes as input a
packet stream and uses a token-bucket algorithm to decide which
packets to allow through. It is characterized by a rate, which deter-
mines the rate at which the token bucket is replenished; and a burst
size, which determines the bucket’s size. When a packet arrives and
the bucket is empty, the rate-limiter may drop it, in which case it
acts as a policer ; or put it in a queue, in which case it acts as a shaper.
Hence, policing and (to a lesser extent) shaping typically affect the
loss experienced by the input packet stream.

Detection, but not Localization. WeHe detects the existence of traffic
differentiation on an end-to-end path, and reports statistics onwhich
ISPs the users were connected to when differentiation was detected.
However, it fundamentally cannot localize the differentiation to any
particular part of the path—in principle, it may have happened any-
where between theWeHe server and theWeHe client. For this, we
turn to network tomography.

https://nal-epfl.github.io/WeHeY

Localizing Traffic Differentiation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

2.2 Network Performance Tomography
Network-performance tomography (from now on just “tomogra-
phy”) refers to a family of algorithms that take as input a network
topologyand theperformanceof end-to-endpaths, and theyestimate
the performance of individual links or link sequences. The perfor-
mance metric may be average loss rate or latency [5, 6, 31, 33, 37],
binary loss status (whether a path or link is “lossy” or not) [9, 12, 30],
the probability of being “lossy” [14], or neutrality (whether each path
or link differentiates against a certain service or not) [45]. A path or
link sequence is defined as “lossy” during a time interval when its
loss rate during that interval exceeds a given “loss threshold.”

Tomographic System of Equations. The common element of tomog-
raphy algorithms is that they use the network topology to build a
system of equations where: each known entity represents the per-
formance of a path or set of paths, and each unknown represents the
performance of a link sequence. E.g., consider the topology in Fig-
ure 1, where there are two paths, {𝑝1,𝑝2}, and three link sequences,
{𝑙1,𝑙2,𝑙𝑐 }, with 𝑙𝑐 the only common link sequence between the two
paths. Suppose:
• 𝑥𝑘 is the probability of link sequence 𝑙𝑘 being non-lossy;
• 𝑦𝑖 is the probability of path 𝑝𝑖 being non-lossy;
• 𝑦1,2 is the probability of both paths being non-lossy at the same
time.

Assuming independent link sequences, we can write [14, 30]

𝑦1 = 𝑥𝑐 ·𝑥1
𝑦2 = 𝑥𝑐 ·𝑥2
𝑦1,2 = 𝑥𝑐 ·𝑥1 ·𝑥2

(1)

The first two equations say that each path is non-lossy at a givenmo-
ment if and only if the two link sequences it comprises are non-lossy
at that moment. The last equation says that the two paths are both
non-lossy at a given moment if and only if the three link sequences
they comprise are non-lossy at that moment.

Identifiability and Rank. Informally, we say that a link sequence is
“identifiable” when it is possible to create a tomographic system of
equations that enables us to characterize this link sequence. For a
link sequence to be identifiable, it is necessary (though not sufficient)
that there exists a set of paths that intersect exactly at that link se-
quence. E.g., in Figure 1, link sequence 𝑙𝑐 may be identifiable because
paths 𝑝1 and 𝑝2 intersect exactly at 𝑙𝑐 . Conversely, none of the links
within 𝑙𝑐 may be identifiable because, from the vantage points that
we have, we cannot distinguish the individual impact of any one of
these links on our measurements.

Identifiability is closely related to the rank of the tomographic sys-
tem of equations: if the system is full-rank, then every link sequence
is identifiable as long as there exists a set of paths that intersect
exactly at that link sequence. In principle, full-rank is preferable
because it yields a unique solution [14, 30, 31]; a rank-deficient sys-
tem admits multiple solutions, and one needs additional criteria to
pick one, e.g., one can favor the solution that includes the smallest
number of congested links [9, 12, 33, 37], or the one that is most
consistent with link history [30].

Path Performance Correlation. To create a full-rank system of equa-
tions, it is not enough to consider the performance of individual

paths; one must consider the performance correlation among multi-
ple paths. E.g., in the above example, if we consider only the first two
equations (which describe the performance of individual paths), the
system is trivially rank-deficient, as we have three unknowns 2 (𝑥𝑐 ,
𝑥1, and 𝑥2). Once we add the last equation (which captures the per-
formance correlation between the two paths), the system becomes
full-rank, and we can solve it to obtain the performance of all the
link sequences. Creating full-rank systems may not be an option,
e.g., when tomography is used on top of passive measurements.

Typical Setting. In the typical tomography setting, one has access
to a given set of vantage points in a network, and the goal is to
characterize the performance of as many links in the network as
possible, potentially given a measurement budget, e.g., a maximum
number of measurement probes. So, a common challenge is picking
the vantage points/paths that yield the best results [15, 34, 35]. More
generally, tomography research typically focuses on scalability, e.g.,
minimizing the inference error and/or the required measurements,
as the size of the network topology increases.

3 OUR SYSTEM
3.1 Overview and Rationale
In this work, we consider a path 𝑝0, between a server and a client,
that is known to differentiate between an original and a bit-inverted
trace3. Given this,WeHeY looks for evidence that the differentiation
happens within a target network area that contains the client. In this
paper, the target network area is always the client’s ISP, but it could
be any area around the client.

Our setting differs from the typical tomography setting described
at the end of Section 2.2 in that (a) our goal is to characterize the
behavior of one particular network area,while (b) our vantage points
are one particular client and a set of servers that can communicate
with the client. In principle, we could involve other clients in order
to create a richer set of vantage points and paths and emulate the
typical tomography setting. However, thatwould require clients that
run measurements at particular points in time, e.g., through pop-up
messages or remote control, and we believe either approach would
discourage participation in differentiation measurements.

WhenWeHeY is invoked, it performs four operations:
(1)Topology construction (§3.3): It identifies a topology like the

one inFigure1: twopaths,𝑝1 and𝑝2, that start atdifferent servers, end
at the client, converge exactly once, and the convergence happens
within the target network area. One of the two paths may coincide
with 𝑝0, but it is not necessary. The rationale is to construct the sim-
plest topology that enables us to apply tomography to reason about
the target network area.More specifically, the topologywe construct
must contain a link sequence that (a) is fully contained within the
target network area and (b) is identifiable (§2.2). Requirement (b)
makes it possible to reason about the behavior of this link sequence,
while requirement (a) ensures that if this link sequence differenti-
ates, the differentiation happenswithin the target network area. The
simplest topology that meets these requirements is one with two
paths that converge within the target network area. In principle,

2Adding equations by considering more individual paths does not work. If we add one
equation per path, the rank is always smaller than the number of links, except for the
trivial case of a network with no switches or routers [30].
3E.g., after a standardWeHe test determines this to be the case.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Zeinab Shmeis et al.

WeHeY could use more paths; however, we want to minimize the
amount of work the client has to do, including the data consumption
frommeasurements (given that users may have metered data plans).

(2) Simultaneous replays (§3.4): WeHeY replays a modified
version of the original trace on the two paths simultaneously; we
call this the “original simultaneous replay”. Then, it does the same
with amodified version of the bit-inverted trace; we call this the “bit-
inverted simultaneous replay”. During these simultaneous replays, it
performs throughput, packet-loss, latency, and topology (traceroute)
measurements along each path. The rationale is to performmeasure-
ments that enable us to write a full-rank system of equations like
System 1. Hence, our measurements must capture the performance
correlation between paths 𝑝1 and 𝑝2 (§2.2), and the most efficient
way to do this is through a simultaneous replay.

(3)Differentiation confirmation: WeHeY re-usesWeHe’s al-
gorithm (based on throughput differences) to determine whether
each of the paths 𝑝1 and 𝑝2 differentiated between the original and
bit-inverted traces. Unless both of them did, WeHeY outputs that
it did not find evidence of traffic differentiation within the target
network area.

(4)Commonbottleneck detection (§4):WeHeY considersmea-
surements collected along 𝑝0, 𝑝1 and 𝑝2, and it determines whether
𝑝1 and 𝑝2 shared a common bottleneck. If yes, then the differenti-
ation must have happened within the target network area—since
the two paths may share a bottleneck only within that area— and
WeHeY outputs that it did find evidence of traffic differentiation
within the target area. In any other scenario, WeHeY outputs that
it did not find such evidence.

Commonbottleneckdetection consists of twoalgorithms: (a) First,
it compares the throughput achieved along 𝑝0 during the original
replay, against the aggregate throughput achieved along 𝑝1 and
𝑝2 during the original simultaneous replay. If these two quantities
are approximately the same, it outputs that it detected a common
bottleneck. (b) Otherwise, it examines the loss patterns experienced
along 𝑝1 and 𝑝2 during the original simultaneous replay. If the two
paths experienced significantly correlated loss trends, it outputs that
it detected a commonbottleneck. Otherwise, it outputs that it did not.

The rationale behind these two separate algorithms is to distin-
guish between the following scenarios: (a) The client’s ISP imple-
ments traffic differentiation via per-client throttling, e.g., per-client
policers. In this scenario,𝑝0 traverses the per-client bottleneck alone,
then 𝑝1 and 𝑝2 share the per-client bottleneck only with each other.
Hence, this scenario can be detected through the simple throughput
comparison of the first algorithm. (b) The client’s ISP implements
trafficdifferentiationvia collective throttling, e.g., a collective policer
for all traffic from a given service or application. In this scenario, 𝑝0,
and then𝑝1 and𝑝2 share the collective bottleneckwithotherflows, of
an unknown number and rate. This sharing has an unknown impact
on the throughput achieved byWeHeY’s replays, hence requires a
more sophisticated algorithm.

We implemented WeHeY as part of WeHe, which is hosted by
the M-Lab measurement platform [20]. In particular, we created a
new “topology construction” module that performs operation (1),
extended theWeHe client and server to perform operation (2), and
extended theWeHe server to perform operations (3) and (4).

3.2 Main Limitations
Our approach can only localize traffic differentiation that involves
a common bottleneck and causes packet loss. This is the case when
differentiation is implemented throughper-client throttlingor collec-
tive per-service/per-application throttling; and the throttling relies
on policers or shallow shapers. Conversely, our approach cannot lo-
calize (in its current form) traffic differentiation that is implemented
through per-TCP-flow and/or per-UDP-flow throttling, or relies on
deep shapers that avoid packet loss.

These limitations do not impactWeHe’s functionality in anyway:
if WeHe detects traffic differentiation that involves a common bot-
tleneck and causes packet loss, WeHeYwill find evidence that the
differentiation happened inside the client’s ISP; otherwise, WeHeY
will output that it did not find any evidence, i.e., it cannot provide
any additional information relative to WeHe. We discuss how to
address these limitations in Section 7.

3.3 Topology Construction
The topology-construction module (TC) periodically ingests and
analyzes data fromM-Lab’s traceroute database [28]. This happens
as frequently as the latter is updated, which is currently once a day.

In particular, TC’s input consists of two BigQuery tables from
M-Lab’s dataset: the first one contains traceroute records collected
using scamper [24], while the second one contains additional ge-
olocation and Autonomous System Number (ASN) information on
each hop, collected from theMaxMind, IPinfo.io, and RouteViews
databases.Merging these two tables yields a set of traceroute records
annotated with the additional per-hop information. From this set,
TC discards all traceroutes that do not meet the following two condi-
tions: (a) the last reported hop has the same ASN as the destination,
and (b) two subsequent links alwaysmeet at the same IP address. The
first condition may not hold, e.g., because an ISP may block ICMP
packets close to the client. The second condition may not hold due
to IP aliasing. We could reduce the number of discarded traceroutes
by leveraging IP alias resolution techniques as in [19], but we have
not implemented this yet.

After filtering the input, TC performs four steps for each tracer-
oute destination 𝑑 found in the retained traceroute records:

(1) It finds all traceroutes destined to 𝑑 . If none exists, it finds all
traceroutes with destinations with the same ASN as 𝑑 .

(2) For each traceroute found in step (1), it identifies all hopswith
the same ASN as 𝑑 . These are candidate intermediate nodes,
i.e., nodes located in the same ISP as 𝑑 , where the two paths
of the final topology could potentially converge.

(3) It considers all pair combinations of the traceroutes found
in step (1). For each pair, it checks if: (a) the two traceroutes
have at least one candidate intermediate node in common,
and (b) they have no common node located outside𝑑’s ISP. To
determine that two traceroutes have a “node in common,” TC
directly compares the IP addresses of their respective hops
(so, again, TC does not benefit from IP alias resolution).

(4) For each traceroute pair that passes the check, it computes
a {traceroute destination, server pair} tuple and stores it in a
topology database.

Localizing Traffic Differentiation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

TC’s output is a table containing for each destination 𝑑 : 𝑑’s IP
prefix (/24 for IPv4 and /48 for IPv6) and ASN; and a list of potential
M-Lab server pairs that form a suitable topology with 𝑑 .

A key question is: given a client, how likely is it that a suitable
topology that involves that client exists? To get a sense, we pulled
from M-Lab all the traceroute measurements collected through
WeHe experiments in April 2023. We ran our topology-construction
algorithmwith one month’s worth of traceroute data and for differ-
ent weeks of the month. On average, there was at least one complete
traceroute for 52% ofWeHe clients, and at least one suitable topol-
ogy for 74% of these clients. These numbers give us a rough lower
bound on the number of suitable topologies for the following reason:
Currently, whenM-Lab suggests a server to aWeHe client, it favors
the servers that are closest to the client, which is not favorable for
constructing suitable topologies. We expect to improve the number
of suitable topologies, e.g., by explicitly adding traceroute measure-
ments from amore diverse set ofM-Lab servers to eachWeHe client.

3.4 Simultaneous Replay
When traffic differentiation is detected on the path between a server
𝑠0 and a client, the client asks the user if they wish to perform ad-
ditional measurements to localize the differentiation. If the user
answers yes:

(1) The client queries the topology database (§3.3) for the IP ad-
dresses of two servers, 𝑠1 and 𝑠2.

(2) The client asks both 𝑠1 and 𝑠2 to replay a modified version of
the original trace simultaneously, then do the same for the
bit-inverted trace.

(3) During these two simultaneous replays, the servers and client
collect throughput, packet-lose, and latency measurements.
At the end of each replay, the corresponding server performs
a traceroute to the client. At the end of both replays, all mea-
surements are gathered at one of the servers.

(4) The server that gathers the measurements verifies that the
topology (the paths from servers 𝑠1 and 𝑠2 to the client) was
still suitable at the end of the replays. If not, it discards the
measurements and updates the topology database. Otherwise,
it proceeds with operations (3) and (4) from Section 3.1.

Synchronization. Ideally,𝑠1 and𝑠2 should start replayingeach traceat
exactly the same time, to maximize the chance that their traffic expe-
riences the same network conditions on the common link sequence.
However, given that we cannot, in general, control when exactly
each packet reaches the common link sequence, the client simply
tells the two servers to start via two commands sent back-to-back.

UDP Replay: Poisson. When a server replays an original UDP trace,
it maintains the original packet sizes, content, and average trans-
mission rate, but modifies the packet-transmission times such that
they follow a Poisson process 4. Thismodification enablesWeHeY to
benefit from thePASTAproperty: a sequenceofmeasurement probes
whose transmission times follow a Poisson process can asymptoti-
cally “see” the true loss rate of the underlying bottleneck [2, 42]. Put
another way, without this modification, the loss rates computed by
WeHeY (Alg. 1, line 7) might not be unbiased estimates of the true

4Li et al. found that differentiation is typically triggered by packet content, and thus,
changing transmission times should not affect the observed differentiation [23].

underlying average path loss rates, while its correlation test (line 10)
would incorporate some undefined level of measurement bias 5.

TCP Replay: Pacing. When a server replays an original TCP trace,
it maintains the original packet sizes and content, but: (a) lets TCP
congestion control and TCP pacing dictate the packet-transmission
times, and (b) potentially extends the trace duration by replaying it
again (more about this below).

TCP pacing serves the same purpose as Poisson transmission
times: When a path carries bursty traffic, it may lose packets in
bursts, causing packets transmitted close to each other to experience
correlated loss; the burstier the loss, the higher its correlation and
the less the path’s average loss rate approximates the average loss
rate of the underlying bottleneck [2]. Pacing reduces burstiness by
guaranteeing a minimum distance between the packets; in a sense,
it enables the packets to “jump over” correlation-inducing bursts,
provided that the packet rate is large relative to the correlation scale.
The reason for not simply using Poisson transmission times is that it
is hard to do so while complying with a congestion-control scheme.

Extending a trace may be necessary, because the original trace
may be too short and yield too few loss measurements for drawing
a reliable conclusion. In that case, the server repeats the trace until
the replay reaches a duration of at least 45 sec.

Packet-lossMeasurements. Duringeachreplay,WeHeY trackspacket
loss.Who does this depends on the transport layer: for UDP traces, it
is the client; for TCP traces, it is the server. In the TCP case, the client
is typically unable to track packet loss because most clients run on
mobile deviceswith standardOSes,which offers limited access to the
transport layer. The server estimates packet loss based on retrans-
missions, using existing tools [3]. We think that this approach is suf-
ficiently accurate forWeHeY and discuss its limitations in Section 7.

4 COMMONBOTTLENECKDETECTION
We first describe our two detection algorithms (§4.1 and §4.2), then
share insight on howwe arrived at the second algorithm, which is
the more sophisticated of the two (§4.3).

4.1 Throughput Comparison
The first detection algorithm takes as input throughput measure-
ments, and it outputswhether𝑝1 and𝑝2 shareda commonbottleneck.
In particular, the input consists of:
• The set𝑋 ≡{𝑋1,𝑋2,...𝑋𝑛}, where𝑋𝑖 is the 𝑖-th throughput sample
collected during the original-traceWeHe replay along 𝑝0.
• The set𝑌 ≡{𝑌1,𝑌2,...𝑌𝑚}, where𝑌𝑗 is the sumof the 𝑗-th through-
put samples collected along 𝑝1 and 𝑝2 during the original-trace
simultaneous replay (§3.4).

In summary, the algorithm checks whether the aggregate through-
put measured along 𝑝1 and 𝑝2 roughly adds up to the throughput
measured along 𝑝0. This should be the case if, during all the replays,
the client’s traffic traverses a queue that is dedicated to that client
and is the bottleneck.

The algorithm relies on two distributions:

5It would also incorporate statistical errors, but these are bounded or can even be
mitigated using jackknife or bootstrap methods, similarly to [23, 43].

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Zeinab Shmeis et al.

0.0 2.5 5.0 7.5 10.0 12.5
throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

sim. replay
single replay

20 0 20 40 60 80
throughput rel. mean difference (%)

0.000

0.025

0.050

0.075

0.100

0.125

PD
F

Tdiff

Odiff

(a) Per-client throttling scenario. The two CDFs (left) and the peak
of the two PDFs (right) overlaps signifcantly.

0 5 10 15
throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

sim. replay
single replay

20 0 20 40 60 80
throughput rel. mean difference (%)

0.00

0.02

0.04

0.06

0.08

0.10

PD
F

Tdiff

Odiff

(b) An alternative scenario. The two CDFs (left) and the two PDFs
(right) do not overlap at all.

Figure 2: CDF of single and sim. replay throughputs (left) and
PDFwith rug plot of𝑂diff and𝑇diff (right).

(1)𝑇diff is anempiricaldistributionthat representsnormal through-
put variation. It is computed from past WeHe tests 6 as follows: We
look for test pairs that were performed less than 10 minutes apart
and belong to the same client, application, and carrier. For each such
test pair, we compute

𝑡diff =
𝑇1−𝑇2

max(𝑇1,𝑇2)
,

where𝑇1 and𝑇2 are the throughputmeansmeasured, respectively, in
the two tests during the bit-inverted replay. The set of these values
(from all the chosen test pairs) forms𝑇diff .

(2)𝑂diff is an empirical normal distribution that represents the dif-
ference between𝑋 and𝑌 . It is computedusing standardMonte-Carlo
simulation (Ch. 6 in [22]). In more detail: We run multiple iterations.
In each iteration, we create two sets𝑋 ′ and𝑌 ′, each one including
a randomly chosen half of the samples from𝑋 and𝑌 , respectively.
Then, we compute their relative mean difference

𝑜diff =
𝑋 ′−𝑌 ′

max(𝑋 ′,𝑌 ′)
,

where𝑋 ′ (resp.𝑌 ′) is𝑋 ′’s (𝑌 ′’s) mean value. The set of these values
(resulting from all the iterations) forms𝑂diff . The number of itera-
tions is the number of data points in𝑇diff , such that𝑂diff and𝑇diff
have the same size.

If𝑂diff is significantly smaller than𝑇diff , that indicates that the
difference between𝑋 and𝑌 is justifiable as normal throughput vari-
ation. In this case, the algorithm outputs that 𝑝1 and 𝑝2 shared a
common bottleneck. Otherwise, the algorithm outputs that it did
not find evidence of this.
6https://wehe-data.ccs.neu.edu/

Figure 2 shows representative examples of these distributions:
Figure 2a corresponds to the scenario of per-client throttling, where
𝑝1 and 𝑝2 traverse the same bottleneck queue, which is dedicated
to that client; this is the scenario that this algorithm aims to detect.
Figure 2b corresponds to an alternative scenario, where 𝑝1 and 𝑝2
share a bottleneck queue with other traffic. On the left, we show the
cumulative distribution functions (CDFs) of𝑋 and𝑌 . On the right,
the probability density functions (PDFs) and rug plots 7 of𝑂diff and
𝑇diff . 𝑂diff has significantly lower variance (narrower PDF) than
𝑇diff , because the former represents throughput achieved during
different intervals of the same test, whereas the latter represents
throughput achieved during different past tests.

We observe the following: First, 𝑋 and 𝑌 overlap significantly
more in the per-client throttling scenario (Figure 2a, left) than in the
alternative (Figure 2b, left). Second,𝑂diff ’s and𝑇diff ’s peaks overlap
significantly in the former (Figure 2a, right), but not at all in the
latter (Figure 2b, right). Differently said, in the per-client throttling
scenario, the difference between𝑋 and𝑌 (captured by𝑂diff) is small
enough that it can be conservatively justified as normal throughput
variance (captured by𝑇diff).

The comparison between𝑂diff and𝑇diff is done with the Mann-
Whiteny U (MWU) test, also known as Wilcoxon Rank Sum test
(Ch. 4 in [22]), with the following alternative hypothesis:𝑂diff has
significantly smaller rank-sum than 𝑇diff . The algorithm outputs
that it detected a common bottleneck if the p-value of the MWU test
is less than 0.05; otherwise, it outputs that it did not find evidence of
a common bottleneck. For example, in the per-client throttling sce-
nario shown in Figure 2a, the p-value is 7.54𝑒−18<0.05, while in the
alternative shown in Figure 2b, it is 0.99>0.05. Two more common
alternatives thanMWU are the T-Test and the Kolmogorov-Smirnov
test; we do not use the former because it requires assumptions about
the distribution of the throughput samples, and we do not use the
latter because it is less robust to outliers.

4.2 Loss Trend Correlation
The second detection algorithm (Alg. 1) takes as inputmeasurements
collected along 𝑝1 and 𝑝2 during the original-trace simultaneous
replay, as well as the maximum acceptable false-positive rate FP ;
and it outputs whether 𝑝1 and 𝑝2 shared a common bottleneck. In
summary, the algorithm checks whether the loss rates of the two
paths follow a similar trend over time. This should be the case if,
during the simultaneous replay, traffic from the two paths traversed
a common bottleneck and constituted a small fraction of the overall
traffic traversing that bottleneck.

One element that shaped the design of Alg. 1 is that the input
measurements are noisy. This comes from the fact that, for TCP
traffic, we can only measure packet loss on the server side, and we
do so by interpreting TCP retransmissions as loss events (§3.4). This
introduces two types of error: First, loss events may be overcounted.
Second, each loss event is registered at a different time than when
it actually occurred (at the moment of the resulting TCP timeout or
duplicate ACKs). The latter introduces a certain amount of “desyn-
chronization” in the measurements: suppose a packet from 𝑝1 and
a packet from 𝑝2 are dropped at the same network queue due to
the same overflow event; these two loss events may be registered at

7A rug plot helps project the location of raw data points onto a particular axis.

https://wehe-data.ccs.neu.edu/

Localizing Traffic Differentiation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Algorithm 1 LossTrendCorrelation
Input: Packet-loss measurements𝑀

Acceptable false-positive rate FP
Output: True or False

1: correlations←0
2: Σ← Create set of interval sizes s.t. ∀𝜎 ∈ Σ, 10≤ 𝜎

max𝑖 {𝑝𝑖−min−RTT } ≤ 50
3: for 𝜎 ∈ Σ do
4: (LostPkts1,TxedPkts1,LostPkts2,TxedPkts2)←

Create time series from𝑀 , 𝜎
5: for 𝑡 ∈ 0..𝑇 −1 do
6: for 𝑖 ∈ 1,2 do
7: LossRate𝑖 [𝑡]← LostPkts𝑖 [𝑡]

TxedPkts𝑖 [𝑡]
8: end for
9: end for
10: if Spearman−p−value (LossRate1,LossRate2) <FP then
11: correlations←correlations+1
12: end if
13: end for
14: return correlations> (1−FP) |Σ |

different times, depending on the round-trip times (RTTs) and TCP
timeouts of the two paths.

At a high level, Alg. 1 takes two steps to mitigate the effects of
measurement noise: (a) It tracks each path’s loss rate as an average
over a sufficiently large set of packets that span multiple RTTs. (b)
To check for trend similarity, it relies on Spearman’s correlation
coefficient, which does not depend much on the absolute values of
the average loss rates but rather on their rank in the data set.

In more detail, Alg. 1 works as follows: It iterates over different
interval sizes (line 3). For each size 𝜎 , it divides time into intervals
of size 𝜎 ; counts, per interval and per path, the number of packets
transmitted and lost; and discards intervals where one or both paths
did not transmit a minimum number of packets (10 in our implemen-
tation) or none of the two paths lost any packets (line 4). Then, it
computes the loss rate of each path during each interval (lines 5-9).
Next, it computes the p-value of Spearman’s correlation coefficient
over the two resulting time series, under the null hypothesis that
the two series are not correlated, and checks whether the p-value
indicates correlation with false-positive rate FP (line 10). Finally, it
outputs that it detected a common bottleneck if the latter check is
true for at least a fraction 1−FP of the interval sizes (line 14). In our
prototype and experiments, we set FP =0.05.

The first key element of Alg. 1 is that it computes a loss-rate time
series for each path and analyzes the Spearman correlation of the two
loss-rate time series. We explain the rationale: When a flow crosses
a network bottleneck, its loss rate naturally follows the rate at which
traffic arrives at the bottleneck; the higher the arrival rate, the more
traffic the flow has to contend with (for the bottleneck’s bandwidth),
and hence the higher its loss rate. Thus, when two flows cross a com-
mon bottleneck, their loss rates follow similar patterns over time.
This does notmean that the loss rates of the two flows are always the
sameorevenclose toeachother (aswediscovered thehardway), only
that they tend to increase and decrease together. Alg. 1 captures this
correlation throughhypothesis testing: thenull hypothesis is that the

loss-rate time series of the two paths are not correlated. We use the
Spearman correlation coefficient because it is normalized (it captures
trend, not absolute-value similarity) and, out of all correlation met-
rics, it is considered the least sensitive to strong outliers (because it
limits the outlier to the value of its rank). The p-value of such a corre-
lation test sayshow likely it is that the Spearmancorrelationbetween
the two time series was due to chance. We reject the null hypothesis
iff this likelihood is below our acceptable false-positive rate FP .

The second key element is that the interval size (the step) of the
time series ranges from 10 to 50 RTTs. Choosing the interval size
involves the following trade-off: On the one hand, the shorter the
interval, the higher the risk of a false negative (not detecting an
existing common bottleneck). E.g., suppose we set the interval size
to a few milliseconds; suppose the two paths lose packets to the
same overflow events, but 𝑝1 registers each loss tens of milliseconds
after𝑝2 (so, in a different time interval) due to the desynchronization
mentioned above; as a result, the loss-rate time series of the two
pathsmay not be significantly correlated, even if the losses were due
to a common bottleneck. On the other hand, the larger the interval,
the higher the risk of a false positive (detecting a common bottleneck
when there is none). E.g., consider a set of measurements that last
30sec, and an interval size of 15sec (resulting in two intervals); if,
for both paths, the loss rate happens to increase from the first to the
second interval, the Spearman-correlation analysismay indicate cor-
relation, yet that would hardly be evidence of a common bottleneck.
So, the interval size should be at least multiple RTTs long, in order to
mask the desynchronization resulting from different RTTs and TCP
dynamics, and avoid false negatives; but not longer than necessary
in order to reduce false positives.

The third key element is that the algorithm iterates over multi-
ple plausible interval sizes. We explain the rationale: Ideally, the
Spearman-correlation analysis would guarantee the target false-
positive rate FP , independently from the interval size. In practice,
this isnot thecase:Asmentionedearlier, even if the two loss-rate time
series are correlated, thatdoesnotnecessarily indicate a commonbot-
tleneck (e.g., if the interval size is too coarse andyields too-short time
series). Moreover, the analysis guarantees the target false-positive
rate when the null hypothesis is that the correlation coefficient is ex-
actly 0. Differently said, if the correlation coefficient of the two time
series is not exaclty 0, the analysis may yield additional false posi-
tives. By iterating over multiple interval sizes, and requiring that the
null hypothesis can be rejected for at least some minimum fraction
of these, we make the algorithmmore conservative toward yielding
a false positive. We empirically observed that setting this minimum
fraction to 1−FP enables us to never exceed the target false-positive
rate FP , at the expense of a moderate increase in false negatives.

4.3 Design Evolution
Our loss-trend correlation algorithm is simple in retrospect, but
concluding that it is the right algorithm for our task is the result of
multiple iterations. In this subsection, we share our journey, which
involves understanding the nature of the connection between to-
mography and performance correlation.

Revisiting Tomography Assumptions. Considering Figure 1, suppose
both paths occasionally experience significant loss, and we want
hard evidence that the problem lies in the common link sequence,

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Zeinab Shmeis et al.

𝑙𝑐 . If we consider only the performance of each individual path, we
cannot get such evidence: the problemmay lie either in 𝑙𝑐 , or in the
two non-common link sequences, {𝑙1, 𝑙2}, or even in all three of them.
However, intuitively, if we consider the performance correlation
between the two paths, we can: if there is no correlation, then the
problem cannot lie in 𝑙𝑐 ; if there is significant correlation, that consti-
tutes evidence that the problem lies in 𝑙𝑐—under themild assumption
that 𝑙1 and 𝑙2 are independent from each other.

In an attempt to capture this correlation, traditional tomography
estimates the joint performance distribution of the two paths (via the
3rd equation in System 1); this could yield a unique solution, but it
requires further and stronger assumptions to hold. For example, [30]
assumes that packet loss is identically distributed for all flows over
time: if two packets from different flows arrive at a common bot-
tleneck at the same time, they are lost with equal probability, whi
is also constant over time. If loss events follow that pattern, then
System 1 captures correlation well.

In practice, however, such a loss model may not capture how
flows experience a common bottleneck. For instance, one flowmay
experience more significant loss than another due to the same over-
flow/throttling event, because it happened to send significantlymore
bursty traffic during the event. The bigger this difference (between
how different flows experience a common bottleneck), the harder
it becomes for System 1 to capture the resulting correlation. More
formally, whereas System 1 requires a simple loss model (e.g., that
packets from paths 𝑝1 and 𝑝2 are lost at the common bottleneck
with equal probability), the packets may actually be dropped with
probabilities that depend on their arrival times.

V0: Binary Loss Tomography. Our first idea was to use tomography
out-of-the-box: invoke the most appropriate state-of-the-art tomog-
raphy algorithm to infer the performance of each link sequence in
Figure 1; if the common link sequence 𝑙𝑐 had worse performance
than the other two, this means that the two paths had a common
bottleneck (𝑙𝑐).

We started from the state-of-the-art tomography algorithm for
constructing a full-rank system of equations [14] (BinLossTomo,
Alg. 2, Appendix, §B). In addition to packet-loss measurements, this
algorithm takes as input an interval size 𝜎 and a “loss threshold” 𝜏 . It
divides time into fixed-size intervals of size 𝜎 (line 1). For each inter-
val and eachpath𝑝𝑖 , it checkswhether𝑝𝑖 ’s loss rate exceeded the loss
threshold 𝜏 during the interval; if yes (resp., no), it labels 𝑝𝑖 as “lossy”
(resp., “not lossy”) during that interval (lines 2-6). It computes path
performance𝑦𝑖 as the fractionof intervals inwhich𝑝𝑖 was “not lossy”
(line 7); it computes joint path performance𝑦12 as the fraction of in-
tervals in which both paths were “not lossy” (line 8). Finally, it solves
System 1 to infer the performance of each link sequence (the proba-
bility of being “not lossy”) and outputs the solution (𝑥𝑐 ,𝑥1,𝑥2) (line 9).

Our first attempt (BinLossTomo++, Alg. 3, Appendix, §B) simply
invokes the above algorithm (line 1) and detects a common bottle-
neck if the common link sequence has worse performance than both
non-common link sequences (line 2).

The Parameter-Sensitivity Problem. The challenge we faced was the
sensitivity of binary tomography to the loss threshold (which deter-
mines how high of a loss rate makes a path “lossy”) and the interval
size (which determines the time granularity at which loss rates are
computed). Fundamental tomography work does not focus on these

5 10 15 20 25 30 35 40
time (sec)

0

5

10

15

20

lo
ss

 (%
)

path p1 path p2 = 2% = 4%

(a) Loss rates of 𝑝1 and 𝑝2 over time.

2 4 6
loss threshold (%)

0

25

50

75

100

lin
k

pe
rfo

rm
an

ce
 (%

)

2 4 6
loss threshold (%)

lc l1 l2 = 2% = 4%

(b) Inferred performance of 𝑝1’s links (left) and 𝑝2’s links (right).

Figure 3: Example with rate-limiter on the common link
(30secmeasurement duration and 𝜎=0.6sec).

parameters because they do not affect the nature of the underlying
mathematical problem. In our context, however, the sensitivity to
these parameters made it impossible to draw reliable conclusions.

One way in which BinLossTomo fails is when two paths share a
common bottleneck, yet measurement noise and/or TCP dynamics
cause their loss rates (at some granularity) to diverge. Fiddling with
the loss threshold and interval size may suppress some of these di-
vergences and prevent them from causing a false negative. However,
without ground truth, we run the risk of picking parameters that
bias the algorithm in favor of detecting a common bottleneck.

Another,more subtleway inwhichBinLossTomo fails iswhen the
loss rates of two paths are similar, yet they fall on opposite sides of
the loss threshold. In general, binary tomography works well when
path/link loss rates fall naturally into two classes, and there is a sig-
nificant gap between the two [45]. E.g., suppose a link’s loss rate can
be either below 0.001 (“non-lossy”) or above 0.05 (“lossy”); if 𝜏 is set
in themiddle between these twovalues, BinLossTomo infers link per-
formance correctly. However, when loss rates are not bimodal in this
way, it is easy to pick a loss threshold that makes BinLossTomo fail.

We illustrate with an experiment: We instantiate the topology of
Figure 1, where paths 𝑝1 and 𝑝2 carry a long-running TCP flow each;
this traffic, together with other background traffic, goes through a
rate-limiter located in the common link sequence 𝑙𝑐 , which intro-
duces an average loss rate 0.04 and constitutes the sole cause of
packet loss. Figure 3a shows the loss rates of the two paths over time,
as measured end-to-end; each curve corresponds to a different path.
Figure 3b (left) shows the performance of link sequences 𝑙𝑐 and 𝑙1,
as inferred by BinLossTomo, for different loss thresholds 𝜏 .

We focus on Figure 3b (left). The y-axis represents inferred link
performance (the probability of being “not lossy”), while the x-axis
represents the loss threshold 𝜏 . The dark curve shows 𝑙𝑐 ’s perfor-
mance (𝑥𝑐), while the light curve shows 𝑙1’s performance (𝑥1).

If BinLossTomo inferred link performance correctly, we would
see the following: (a) 𝑙1’s performance (the light curve) would be

Localizing Traffic Differentiation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

a straight line at 100%. This is because, in our experiment, 𝑙1 has 0
packet loss (probability 100% of being “not lossy”). (b) 𝑙𝑐 ’s perfor-
mance (the dark curve) would monotonically increase with the loss
threshold 𝜏 . This is because the higher the loss threshold, the less fre-
quently it is exceeded, and the less frequentpathsand linksare “lossy.”

We do not see this behavior, however, for two reasons: First, de-
spite sharing a common bottleneck, the loss rates of the two paths
occasionally diverge enough to fall on opposite sides of the loss
threshold. As a result, BinLossTomo determines that the two paths
occasionally experience loss due to different bottlenecks, and it mis-
takenly attributes some of 𝑝1’s packet loss to 𝑙1. Second, as the loss
threshold approaches 𝜏 =0.04, BinLossTomo fails completely: given
that 𝑙𝑐 ’s true average loss rate is 0.04, the loss rates of the two paths
oscillate around this value, e.g., 0.039, 0.041, etc; hence, their loss
rates frequently fall on opposite sides of 0.04 (as frequently as in half
the intervals). As a result, BinLossTomo decides that they frequently
have different loss statuses, and it mistakenly attributes a significant
part of 𝑝1’s packet loss to 𝑙1. This is why there exists a range of loss
thresholds where 𝑙𝑐 and 𝑙1 appear to have similar performance (the
dark and light curves in Figure 3b (left) are close and even cross).

V1: Tomography without Parameters. The first way we tried to elim-
inate parameter sensitivity was by eliminating the parameters: not
pick a single loss threshold and time interval, but sweep the entire
range of reasonable parameters and check if most combinations led
to the correct conclusion.

Hence, our next attempt (BinLossTomoNoParams, Alg. 4, Appen-
dix, §B) defines a sequence of interval sizesS and loss thresholds T
(lines 1,2). The interval sizes range from 10RTT to 50RTT. The loss
thresholds are chosen such that 0.1≤𝑦𝑖 ≤ 0.9 (where𝑦𝑖 is the path
performance computed in V0, line 7), i.e., none of the paths is found
“lossy” too often or too rarely. For each interval size and each loss
threshold, Alg. 4 invokes BinLossTomo (line 5) and keeps track of
the gap between the performance of the common link sequence, 𝑥𝑐 ,
and each of the non-common link sequences, 𝑥1 and 𝑥2 (lines 6,7).
Finally, it computes the two average gaps across all loss thresholds
and interval sizes, and it detects a common bottleneck if both of
them are positive (line 9); that is, if the common link sequence had
on average, across all parameter combinations worse performance
than both non-common link sequences.

The rationale behind averaging the gaps across parameters is the
following: Even if BinLossTomo infers link performance incorrectly,
there exists a range of “good” parameter combinations (e.g.,𝜏 <0.035
in Figure 3b (left)), for which BinLossTomo++ draws the correct
conclusion. For these “good” parameter combinations, the inferred
performance of the common link sequence (𝑥𝑐) is worse than the
inferred performance of the other link sequences (𝑥1 and 𝑥2), and
the gap is significant (even if the values are incorrect in the absolute).
Then, there exists a range of “bad” parameter combinations (e.g.,
𝜏 >0.04 in Figure 3b (left)) for which BinLossTomo++ keeps making
incorrect conclusions; for all of these parameter combinations, the
gap is significantly smaller (because the inferred performance of the
common and non-common link sequences is similar). Averaging the
gap across all the reasonable parameter combinations eliminates the
error introduced by the bad ones.

This approach eliminates the false positives and some of the false
negatives that result from picking an unfortunate loss threshold or

interval size. However, we ran into many scenarios where two paths
share a common bottleneck, yet BinLossTomo decides that they are
not “lossy” during the same time intervals, and no parameter com-
bination can change this conclusion. This is because, as discussed
earlier, when two paths share a common bottleneck, their loss rates
tend to increase and decrease together, but they are not necessarily
similar. BinLossTomo is fundamentally unable to capture this kind
of correlation.

V2: Tomography with Loss Trends. Hence, the second way we tried
to eliminate parameter sensitivity was by rethinking the underlying
tomography algorithm.We designed an algorithm (not shown) that
labels a path “lossy” during an interval when its loss rate increases
relative to the previous interval. This modification naturally elim-
inates the notion of a loss threshold and significantly reduces the
sensitivity to the interval size.

WeHeY: From Tomography to Correlation. Our final loss-trend cor-
relation algorithm is V2 with a simplification: While studying V2’s
behavior, we realized that we did not actually need a complete to-
mography algorithm; we only needed to compute the performance
correlation of the two paths. A tomography algorithm outputs the
performance of each link sequence; V2 needs this output only to
check if the common link sequence had worse performance but
does not need the precise performance values. Now, V2’s underly-
ing tomography algorithm infers that the common link sequence
has worse performance iff it determines that the performance of
the two paths was correlated. Hence, we only needed to compute
the performance correlation of the two paths (similarly to how V2
does it). This is precisely what our final algorithm does: it computes
the performance of each path as a time series of loss rates; then, it
computes the Spearman correlation coefficient of the two time series.

5 EVALUATION IN THEWILD
We tested WeHeY’s throughput-comparison algorithm (§4.1) on
five U.S. cellular ISPs 8 that apply traffic differentiation as part of
their offered plans (e.g., disclosed as “video streaming at DVD qual-
ity (480p)” [16]). This type of policy is typically implemented via
per-client throttling [23]. We used this as “ground truth” to test the
throughput-comparison algorithm.

Wewerenotable to testWeHeY’s loss-trendcorrelationalgorithm
(§4.2) in the wild, because we are not aware of any ISP disclosing
that it implements collective per-application/per-service throttling.
We tried to craft experiments that would trigger realistic collective-
throttling behavior but did not succeed: We replayed concurrently
a large number of WeHe traces to the same client (and pretended
that each flow belonged to a different client). However, this yielded
unrealistically high loss rates, presumably, because the policers used
for per-client throttling are not configured to handle a large number
of concurrent streams. The loss-trend correlation algorithmwas not
able to detect the common bottleneck because it does not perform
well when the loss rate exceeds 20% (§6.3).

8Verizon, T-Mobile, Visible, TracFone, and GoogleFi.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Zeinab Shmeis et al.

ISP1 ISP2 ISP3 ISP4 ISP5
89.8% 89.83% 94% 98.18% 16.28%

Table 1: Successful localization rate of traffic differentiation
in five real ISPs.

Setup. We used twoWeHeY servers located in different zones of the
Google Cloud Platform (GCP) Iowa (“us-central-a” and “us-central-
c”) and aWeHeYmobile client runningon aGoogle Pixel 7 Pro smart-
phone. Each server ran theWeHeY server code on an e2-standard
virtual machine (VM) with an Ubuntu 20.4 LTS boot image. For each
of the five ISPs, we purchased an unlimited prepaid SIM card.

Experiments. We performed around 50 “basic” tests per ISP, using
traces from Netflix, YouTube, Disney+, Amazon Prime and Twitch.
We ran these tests the same way a WeHeY user would: used the
client to request a standardWeHe test, then clicked “yes” when the
client asked if we wanted to run an additional test for localization
(because it detected traffic differentiation). If WeHeY’s throughput-
comparison algorithmworked perfectly, it should detect a common
bottleneck in all these tests.

We also performed a set of “sanity check” tests. These did not cap-
ture any realistic scenario; their goal was to confirm that throughput
comparison works correctly. We repeated the basic experiments;
however, during the original simultaneous replay, a third server
replayed a third trace to the same client. If WeHeY’s throughput-
comparisonalgorithmworkedas expected, it shouldnot detect a com-
mon bottleneck in any of these tests. This is because, in these tests,
𝑝1 and 𝑝2 shared the same bottleneckwith an additional path; hence,
their aggregate throughput should not add up to that achieved by 𝑝0.

Results. In the basic tests, for four out of the five ISPs, the algorithm
detected a common bottleneck at least 89% of the time; for one ISP,
it did so only 16% of the time (Table 1).

Wehave the followinghypothesis forwhy the algorithmperforms
poorly with this particular ISP: This ISP’s throttling policy changes
as a function of the traffic rate that the client is receiving. In partic-
ular, fixed-rate throttling at 2.5Mbps kicks in after some criterion is
met. During the simultaneous replay, this criterion is met faster (but
not equally fast across tests), presumably, because two servers are
streaming to the client concurrently. As a result, during the original
simultaneous replay, fixed-rate throttling starts earlier (but not at
an easily predictable moment), causing the throughput-comparison
test to fail. Figure 4 shows throughput over time for one of these tests,
during the single (blue) and simultaneous (orange) original replay:
during the simultaneous replay, throughput drops to 2.5Mbps after
5sec; during the single replay, the same thing happens after 22sec.
As a result, the aggregate throughput achieved during the original
simultaneous replay does not add up to the throughput achieved
during the original single replay, and the algorithm does not detect
a common bottleneck. We believe that we could correctly handle
such cases by identifying the point in time where fixed-rate throt-
tling starts and applying throughput comparison only thereafter.
However, we have not implemented this yet.

In the sanity-check tests, the algorithm only exhibited the wrong
behavior (detected a common bottleneck) once.

5 10 15 20 25 30 35 40 45
time (sec)

0

5

10

15

20

th
ro

ug
hp

ut
 (M

bp
s) single replay

sim. replay

Figure 4: Example of throughput over time achieved during
thesingleandsimultaneousoriginal replays to ISP5’snetwork.

6 EVALUATIONVIA EM/SIMULATION
We testedWeHeY’s loss-trend correlation algorithm (§4.2) via em-
ulation and simulation. After stating our experimental setup (§6.1),
we answer two questions: Does the algorithm work as expected
(§6.2)?What are its limits, i.e., what traffic patterns, RTT differences,
and congestion/policing levels break it (§6.3)? We use our proto-
type to answer the former and ns-3 simulation [32] for the latter. In
summary, the algorithm incurs no false-negatives under realistic
network conditions, and a false-positive rate close to or better than
the configured target (5%) even in extremely adversarial scenarios.

6.1 Experimental Setup
Table 2 lists the parameters of our experiments (ranges and default
values). A parameter has its bolded value unless otherwise stated.

Topology and Traffic. Each experiment instantiates the topology of
Figure 1, where paths 𝑝1 and 𝑝2 perform WeHeY’s simultaneous
replays (§3.4). Each path replays an (original, bit-inverted) trace pair.
We consider one TCP trace pair and five UDP trace pairs, one from
each of the UDP applications that WeHe replays: Skype, WhatsApp,
MS Teams, Zoom, andWebex 9. In addition to the trace replays, we
send along the two paths background traffic generated from CAIDA
Internet traces [4]. Each background traffic stream corresponds to a
different segment of aCAIDA trace. To create realisticTCPdynamics,
we do not replay TCP packets at the network layer; we extract from
the trace the entire TCP flow payloads and replay them from the
application layer. For all the experiments we show in this paper, we
used the equinix-chicago trace of 29 Oct. 2010. This has an average
rate =168Mbps with around 400 active TCP flows every second.

PerformanceMetrics. Weconsider twometrics: (a) False-negative rate
(FN): A “false negative” is an experiment whereWeHeY’s loss-trend
correlation algorithm does not detect a common bottleneck even
though one exists. (b) False-positive rate (FP): A “false positive” is an
experiment where the algorithm does detect a common bottleneck
even though one does not exist.

Rate-limiter Configuration and Location. In each experiment, we
emulate/simulate one or two rate-limiters, i.e., elements that imple-
ment policing or shaping, depending on their queue size. We set the
throttling rate and queue size so as to achieve a target average loss
rate and queuing delay. We always set the burst size to rate×RTT,
which guarantees that the throttling rate is achieved (on average)
during the experiment. We provide more implementation details in
the Appendix, §C.1.

9We experiment with real traces from UDP applications because the rate of a UDP
replay is determined by the trace. In contrast, the rate of a TCP replay is determined
by congestion control (§3.4).

Localizing Traffic Differentiation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Policer Parameters

Input Traffic
rate

1.3,1.5,2,2.5

burst (Byte) rate × RTT
queue (× burst) 0.25,0.5,1
% of background 25,50,75
Rate-limiter location common link (𝑐),

non-common links (𝑛𝑐𝑖)
Network Parameters

Input Traffic
Link’s bandwidth

0.2,0.95,1.05,1.15

RTT1 (msecs) 10,35
RTT2 (msecs) 10,15,25,35,60,120

Table 2: Parameters for emulation/simulation experiments.
Default values in bold.

The location of the rate-limiter(s) depends on what we test for:
when we test for FN, there is one rate-limiter on the common link
sequence, 𝑙𝑐 ; when we test for FP, there are two identically config-
ured rate-limiters, one on each of the non-common link sequences,
𝑙1 and 𝑙2.

Weemulate/simulateper-application/per-service throttling:When
a link sequence deploys a rate-limiter, it directs to it: (a) any traffic
that belongs to an original trace, and (b) some fraction of the back-
ground traffic. The remaining background traffic and any traffic that
belongs to a bit-inverted trace bypasses the rate-limiter. The fraction
of the background traffic that is directed to the rate-limiter plays the
role of traffic from the same application or service as the original
WeHe trace, which competes for the rate-limiter’s resources. The
fraction ranges from 25% to 75%, butwe adjust the throttling rate and
queue size to achieve a particular target loss rate and queuing delay.

Testbed. Our testbed consists of: (a) Two servers located in different
zones of aGCP data-center. Each server runs theWeHeY server code
on an e2-standard virtual machine (VM) with an Ubuntu 20.4 LTS
boot image. (b) A client in the same continent as theGCP data-center.
This is aLinuxmachinewithan IntelCore i7-4770CPUProcessor and
32 GiB of memory. It runs theWeHeY client code and potentially a
software switch that relies on Linux’s Traffic Control (tc) tools (§6.2).

6.2 Wide-area Testbed
with Emulated Rate-Limiter

Experiments. Weemulated scenarioswhere traffic experiences throt-
tling at the common link sequence 𝑙𝑐 . We varied the rate-limiter’s
rate, burst size, and queue size such that: (a) Traffic arrived at the rate-
limiter at 1.3×, 1.5×, 2×, and 2.5× the rate; the larger this factor, the
higher the resulting loss. (b) The queue size was 0.25×, 0.5×, and 1×
the burst size; the larger this factor, the higher the resulting queuing
delay, and the more we emulated shaping rather than policing. This
yielded 12 rate-limiter configurations; for each one and for each of
our six trace pairs (one TCP and five UDP), we ran five experiments,
each with different (randomly selected) background traffic. So, in
total, we ran 360 emulation experiments. In 41 of these, WeHe did
not detect traffic differentiation (the throttling was not significant
enough). We discuss only the remaining 319 experiments.

WeHe Tests Experiments
0

10

20

30

40

50

re
tra

ns
m

iss
io

n
(%

)

(a) Retransmission rate.

WeHe Tests Experiments
0

50

100

150

200

de
la

y
(m

se
c)

(b) Delay.

Figure 5: Original-replay properties observed in pastWeHe
tests and in our emulation experiments.

To demonstrate that these experiments cover a diverse set of real-
istic network conditions resulting from real policing or shaping, we
compare themwith data gathered from real WeHe tests. In Figure 5,
we present boxplots of the average retransmission rate and queuing
delay measured during the original replays from both our TCP ex-
periments (orange) and real WeHe tests (performed in the wild) that
detected trafficdifferentiation (gray);wedescribehowwederived the
latter in the Appendix, §C.2. Regarding retransmissions (Figure 5a),
we see that the first and third quartile from our experiments (orange
boxplot) covers the full rangeof retransmission rates frompastWeHe
tests (gray boxplot). Regarding delay (Figure 5b), our experiments
cover a significant fraction of the delays from pastWeHe tests.

Results. In all 319 experiments, WeHeY’s loss-trend correlation al-
gorithm correctly detected a common bottleneck (FN =0).

We further explore whatWeHeY’s FNwould be with different de-
sign choices: (a) If it relied on classic tomography for common bottle-
neck detection, and (b) if it replayed the (original, bit-inverted) traces
unmodified. Figure 6a shows the results for TCP traffic: The first pair
shows FNwhen replaying modified traces. Each of the other pairs
shows FNwhen replayingunmodified traces from the corresponding
application. In each pair, the bar on the right shows FNwhen relying
on loss-trend correlation, while the bar on the left shows FNwhen
relying on BinLossTomoNoParams (Alg. 4, our best algorithm that
relies on classic tomography). So, the right-most bar of the first pair
showsWeHeY’sFN(which is0),whileall otherbarscorrespondtodif-
ferentdesignchoices.Wesee that classic tomography increasesFNby
66–82%,while theunmodified traces further increase it by3–11%, Fig-
ure 6b shows similar results for UDP traffic: All pairs show FNwhen
relying on BinLossTomoNoParams. In each pair, the bar on the left
shows FNwhen replayingunmodified traces from the corresponding
application, while the bar on the right shows FN when replaying
Poisson traces.We see that classic tomography does betterwithUDP
than TCP, but it still yields non-zero FN rates. So: WeHeY needs
both its loss-trend correlation algorithm (§4.2) and the simultaneous
replay of modified traces (§3.4) to achieve its good FN performance.

6.3 Simulations (Limit Exploration)
We now explore when and how WeHeY’s loss-trend correlation
algorithm breaks.

FN under Severe Throttling. First, we simulated scenarios where the
sole cause of packet loss was throttling at the common link sequence

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Zeinab Shmeis et al.

-Pacing Amazon Disney+ YouTube Netflix Twitch0
10
20
30
40
50
60
70
80
90

100
FN

 (%
)

0 0 0 0

classic-tomo loss-trend-corr

(a) TCP.

Skype WhatsApp MS Teams zoom Webex0

5

10

15

20

25

30

FN
 (%

)

classic-tomo+unmodified classic-tomo+Poisson

(b) UDP.

Figure 6: False-negative rate of alternative designs.

0 5 10 15 20 25 30 35
retransmission (%)

0

5

10

15

20

25

de
la

y
(m

se
c)

true positive false negative

Figure 7: False-negative rate for different TCP retransmission
rates.

15msec 25msec 35msec 60msec 120msec
UDP - FN 0% 0% 0% 0% 21.33%
TCP - FN 21.66% 25.86% 28.33% 31.66% 50%

Table 3: False-negative rate for different RTTs.

𝑙𝑐 . We set the experimental parameters as in §6.2, except: the RTTs
were around 35msec, andwevaried the fractionof background traffic
that was directed to the rate-limiter according to all the values in
Table 2.WeHeY’s overall FN in these experiments was=19.2%. Most
false negatives were TCP experiments with a retransmission rate
above 20%, which resulted from directing 75% of the background
traffic to the rate-limiter. Figure 7 illustrates this: eachdata point is an
(average retransmission rate, average queuing delay) tuple resulting
from a TCP experiment; the orange points are true positives, while
the blue ones are false negatives. In summary, when the retransmis-
sion rate exceeds 20%, the too-frequent loss events cause significant
desynchronization between the two TCP flows of the simultaneous
replay (inmany intervals, only one flow can “see” some of its packets
surviving the rate-limiter), and TCP pacing is not enough to outbal-
ance this. Conclusion: When throttling causes TCP retransmission
rates above 20%, the FN performance of the loss-trend correlation
algorithm deteriorates. On the positive side, such high TCP retrans-
mission rates are uncommon in the wild (Figure 5a, gray boxplot).

0.95 (low) 1.05 (medium) 1.15 (high)
UDP - FN 0% 0.38% 2.38%
TCP - FN 19.3% 28% 34.88%

Table 4: False-negative rate under severe congestion.

TCP Skype WhatsApp MS Teams Zoom Webex
1.13% 2.5% 1.67% 3.75% 3.27% 2.5%
Table 5: False-positive rate under identical rate-limiters.

FN under Large RTTs. Next, we repeated the same experiments, ex-
cept: we set 𝑝1’s RTT to 35msec, and we varied 𝑝2’s RTT from 15
to 120msec. We selected these RTTs based on the 5th, 25th, 50th,
75th, and 95th percentile of the RTTs observed by the bit-inverted
traces in past WeHe tests. Table 3 shows the FN of the loss-trend
correlation algorithm for different RTTs. In general, FN does not
change significantly, except when 𝑝2’s RTT is 120msec (so, the RTT
difference is 85msec), at which point FN increases to 50% and 21.33%
for TCP and UDP experiments, respectively. The main reason for
the deterioration is the following: the larger the RTT, the larger the
interval size of the loss-trend correlation algorithm (which is set to
multiple RTTs), hence, the fewer the intervals per experiment; in
general, fewer intervals make it more likely for the Spearman corre-
lation test to be inconclusive. Conclusion: The loss-trend correlation
algorithm is, in general, robust to the RTTs.

FN under Severe Congestion. Next, we simulated scenarios where
packet loss was due to throttling on the common link sequence,
as well as standard network congestion on the non-common link
sequences, 𝑙1 and 𝑙2. We set the experimental parameters as in “FN
under Severe Policing,” except: we varied 𝑙1 and 𝑙2’s transmission
rates according to all the values inTable 2. Table 4 shows the FNof the
loss-trend correlation algorithm for different levels of congestion on
𝑙1 and 𝑙2. Under medium (resp. high) congestion, traffic experiences
2x (resp. 3x) more loss on 𝑙1 and 𝑙2 than under low congestion. As
expected, FN increases as 𝑙1 and 𝑙2 become increasingly congested be-
cause theybecome thedominant bottlenecks for the respective paths,
causing the two paths’ loss rates to become decorrelated.Conclusion:
When the non-common link sequences become severely congested,
the FN performance of the loss-trend correlation algorithm deteri-
orates. However, these are arguably not real false negatives, in the
sense that the dominant bottleneck for each path is not the common
link sequence anymore. In any case, when an ISP’s traffic differen-
tiation is not the dominant cause of packet loss, we think that it is
reasonable forWeHeY to not localize that differentiation to the ISP.

FP under Identical Rate-Limiters. Finally, we simulated scenarios
where the sole cause of packet losswas throttling at the non-common
link sequences, 𝑙1 and 𝑙2. We varied the rate-limiters’ configuration
according to Table 2, but kept the two configurations identical in
each experiment. In our context, this is the ultimate FP test: it tests
whether the loss-trend correlation algorithm can distinguish be-
tween two paths being subjected to the same rate-limiter, versus
two paths being subjected to different, identically configured rate-
limiters. We use it not because it is realistic, but because we cannot
imagine any realistic scenario that would make it more likely for
our algorithm to yield a false positive. Table 5 shows the FP of the
loss-trend correlation algorithm for different trace pairs.We see that

Localizing Traffic Differentiation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

all experiments yielded an FP that was close to or better than the tar-
get (5%). Conclusion: The loss-trend correlation algorithm achieves
the target FP, even under the extremely adversarial scenario of an
independent but identically configured rate-limiter on each path.

7 DISCUSSION

Common bottleneck assumption: WeHeY’s main limitation is
the common-bottleneck assumption (§3.2): because of it, WeHeY
cannot localize traffic differentiation implemented with per-flow
policers/shapers. We can remove this limitation as follows: In Step
#2 (§3.1) when servers 𝑠1 and 𝑠2 replay the original trace along paths
𝑝1 and 𝑝2, we can slightly modify the replayed trace instances such
that they appear to belong to the same flow; this way, traffic from the
two paths will be assigned to the same policer/shaper, andWeHeY
should be able to detect the common bottleneck. However, there is
an additional challenge to solve: the traffic from the two pathswill be
the only traffic assigned to the policer/shaper, meaning that the two
paths will significantly affect each other’s performance; accurately
detecting performance correlation in that scenario is harder andwill
require different statistical tools.

TCP loss inference: We infer packet loss forTCPflows at the server
using standard approaches that are not 100% accurate (e.g., packet
retransmissions can occur if packets are delivered late). We believe
these events are random and thus do not bias our results. Further,
middleboxes such as transparent TCP proxies may hide end-to-end
packet loss from the server. For such cases,WeHe already uses client-
side application-layer throughput samples to detect differentiation
that is not seen at the server. In this scenario, one can simply use a
technique similar toTraceBox [8] to identify the locationof theproxy.

BBR/QUIC: We evaluatedWeHeY on TCP Cubic, and it is an open
question how loss rate correlations would occur with BBR flows. On
the one hand, BBR uses pacing like our approach. On the other hand,
BBR adjusts its sending rate such that loss should occur only during
the probe-bandwidth phase. We did not evaluate our system using
QUIC; we believe it would perform similarly towhatever underlying
congestion control algorithm is selected byQUIC (e.g., Cubic orBBR).

8 RELATEDWORK
Network neutrality inference [45] is the intellectual ancestor of our
work, as it proposes network performance tomography to detect and
localize traffic differentiation. That work, however, is more theoret-
ical than ours, focusing on (in)feasibility results. It does include an
algorithm for identifying non-neutral link sequences within large
topologies; however, when applied to our context, that algorithm
performs on par with Alg. 3.

WeHeY’s loss-trend correlation algorithm is related to the one
presented by Kurose et al. [36], in that they both detect a common
bottleneckbasedonend-to-endmeasurements, and theyboth rely on
correlation metrics. That algorithm, however, operates on measure-
ments collected through packet pairs: each packet in a pair travels
along a different path, and the two packets are expected to reach the
common bottleneck at approximately the same time. The algorithm
then computes the correlation of the packet-loss events along the
two paths. We tried to leverage such packet-level correlation, but
it did not work well in our context: even if two packets arrive at a

common policer/shaper close to each other, it is highly likely that
only one of them is lost.

WeHeY is also related to 007 [1], in that, they both leverage net-
work performance tomography to reason about the behavior of a
target network without access to the latter’s network devices. In
particular, 007 labels a link as problematic if enough problematic
paths traverse it. That system, however, does not need to perform
concurrent measurements, nor to compute the performance corre-
lation of different paths that converge at a target link sequence. In
our context, these elements are necessary because they enable us to
find hard evidence of traffic differentiation.

Finally, DiffProbe [17] and Glasnost [10] were conceptually sim-
ilar toWeHe—they detected traffic differentiation on an end-to-end
path based on end-to-end performance comparisons—but focused
on BitTorrent traffic. NetPolice [43] followed the same principle
but additionally used traceroute-like probes to directly estimate
the loss rate of specific path segments, a technique reused later by
NVLens [44]. ShaperProbe [18] and Packsen [41] detected a partic-
ular differentiation mechanism—shaping—on an end-to-end path.
Complementary to the above, Nano detectedwhether “an ISP causes
performance degradation for a service when compared to perfor-
mance for the same service through other ISPs” [39].

9 CONCLUSION
WeHe detects the presence of traffic differentiation on an end-to-end
path based on throughput comparisons; we have presentedWeHeY,
which determines whether any detected differentiation is due to the
user’s ISP. WeHeY’s main contribution is that it provides concrete
evidence that the traffic differentiation indeed happened within the
user’s ISP (as theusermighthave suspectedbutbeenunable toprove).
Under the covers, WeHeY builds on network tomography, evolved
to eliminate sensitivity to “magic numbers” (that are hard to get right
in our context) and short-term, packet-level correlations (that do not
always exist in our context). Our experiments showed that WeHeY
works—with a low false-negative rate and a low, configurable false-
positive rate—under the most adversarial network conditions we
were able to create, using both a wide-area testbed and simulations.
Armedwith sound localization results fromWeHeY, users canmake
more informed decisions for ISP adoption, and policymakers can
better understand the landscape and implications of non-neutrality
in network providers.

ACKNOWLEDGMENTS
This work was funded by an M-Lab/ISOC fellowship. We would
like to thank the M-Lab team for providing the infrastructure and
support essential to our system, especially Lai YiOhlsen and Stephen
Soltesz. We would also like to thank our shepherd, Matt Calder, for
his thoughtful comments and his patience, as well as the anonymous
reviewers for their constructive feedback. Finally, we would like to
thank Derek Ng for his help in implementingWeHeY.

REFERENCES
[1] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Harry Liu, Jitu

Padhye, Boon Thau Loo, and GeoffOuthred. 2018. 007: Democratically finding the
cause of packet drops. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). 419–435.

[2] Francçois Baccelli, Sridhar Machiraju, Darryl Veitch, and Jean C. Bolot. 2006. The
Role of PASTA in Network Measurement. In Proceedings of the 2006 Conference

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Zeinab Shmeis et al.

on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications (Pisa, Italy) (SIGCOMM ’06). Association for ComputingMachinery, New
York, NY, USA, 231–242. https://doi.org/10.1145/1159913.1159940

[3] Philippe Biondi and the Scapy community. 2023. Scapy API reference.
https://scapy.readthedocs.io/en/latest/api/scapy.html. Accessed August 2023.

[4] CAIDA. 2023. The CAIDA Anonymized Internet Traces Dataset (April 2008
- January 2019). https://www.caida.org/catalog/datasets/passive_dataset/.
Accessed August 2023.

[5] Rui Castro, Mark Coates, Gang Liang, Robert Nowak, and Bin Yu. 2004. Net-
work Tomography: Recent Developments. Statist. Sci. 19, 3 (2004), 499 – 517.
https://doi.org/10.1214/088342304000000422

[6] AHeroIII Coates, Alfred O Hero III, Robert Nowak, and Bin Yu. 2002. Internet
tomography. IEEE Signal processing magazine 19, 3 (2002), 47–65.

[7] Mark Coates, Alfred Hero, Robert Nowak, and Bin Yu. 2002. Internet Tomography.
IEEE Signal Processing Magazine 19, 3 (2002), 47–65.

[8] Gregory Detal, Benjamin Hesmans, Olivier Bonaventure, Yves Vanaubel, and
Benoit Donnet. 2013. Revealing Middlebox Interference with Tracebox. In
Proceedings of the ACM Internet Measurement Conference (IMC).

[9] A Dhamdhere, R Texeira, C Dovrolis, and C Diot. 2007. Netdiagnoser: Trou-
bleshooting Network Unreachabilities Using End-to-end Probes and Routing
Data. In Proceedings of the ACM CoNEXT Conference.

[10] Marcel Dischinger, Massimiliano Marcon, Saikat Guha, Krishna P Gummadi,
Ratul Mahajan, and Stefan Saroiu. 2010. Glasnost: Enabling End Users to Detect
Traffic Differentiation. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

[11] MDischinger, AMislove, A Haeberlen, and K P Gummadi. 2008. Detecting BitTor-
rent Blocking. In Proceedings of the ACM Internet Measurement Conference (IMC).

[12] N Duffield. 2006. Network Tomography of Binary Network Performance
Characteristics. In IEEE Transactions on Information Theory, 52(12):5373-5388.

[13] Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pedrosa, Yuchung Cheng,
Tayeb Karim, Ethan Katz-Bassett, and Ramesh Govindan. 2016. An internet-wide
analysis of traffic policing. In Proceedings of the 2016 ACM SIGCOMMConference.
468–482.

[14] Denisa Ghita, Katerina Argyraki, and Patrick Thiran. 2011. Shifting Network To-
mographyToward a Practical Goal. In Proceedings of the ACMCoNEXTConference.

[15] Yiyi Huang, Nick Feamster, and Renata Teixeira. 2008. Practical Issues with Using
Network Tomography for Fault Diagnosis. SIGCOMM Comput. Commun. Rev.
38, 5 (sep 2008), 53–58. https://doi.org/10.1145/1452335.1452343

[16] T-Mobile USA Inc. 2023. Data Maximizer for Prepaid Plans. https://www.t-
mobile.com/support/plans-features/data-maximizer-for-prepaid-plans. Ac-
cessed August 2023.

[17] Partha Kanuparthy and Constantine Dovrolis. 2010. DiffProbe: Detecting ISP
Service Discrimination. In Proceedings of the IEEE INFOCOMConference.

[18] Partha Kanuparthy and Constantine Dovrolis. 2011. ShaperProbe: End-to-end
Detection of ISP Traffic Shaping Using Active Methods. In Proceedings of the ACM
Internet Measurement Conference (IMC).

[19] Ken Keys, Young Hyun, Matthew Luckie, and K Claffy. 2011. Internet-scale ipv4
alias resolution with midar: System architecture. Cooperative Association for
Internet Data Analysis (CAIDA), Tech. Rep (2011).

[20] Measurement Lab. 2023. Measure the Internet, save the data, and make it
universally accessible and useful. https://www.measurementlab.net/. Accessed
August 2023.

[21] Measurement Lab. 2023. Wehe. https://measurementlab.net/tests/wehe. Accessed
August 2023.

[22] Jean-Yves LeBoudec. 2010. Performance evaluation of computer and communication
systems. Epfl Press.

[23] Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and Alan Mislove.
2019. A large-scale analysis of deployed traffic differentiation practices. In
Proceedings of the ACM Special Interest Group on Data Communication.

[24] Matthew Luckie. 2010. Scamper: a scalable and extensible packet prober for active
measurement of the internet. In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement. 239–245.

[25] Linux manual page. 2023. tc-mirred(8). https://man7.org/linux/man-
pages/man8/tc-mirred.8.html.

[26] Linux manual page. 2023. tc-tbf(8). https://man7.org/linux/man-pages/man8/tc-
tbf.8.html.

[27] Linux manual page. 2023. tc(8). https://man7.org/linux/man-pages/man8/tc.8.
html.

[28] Measurement Lab. 2023. Traceroute. https://measurementlab.net/tests/traceroute.
Accessed August 2023.

[29] Juniper Networks. 2023. burst-size. https://www.juniper.net/documentation/
us/en/software/junos/security-services/topics/ref/statement/burst-size-rate-
limiting.html. Accessed August 2023.

[30] Hung Xuan Nguyen and Patrick Thiran. 2007. The boolean solution to the
congested IP link location problem: Theory and practice. In IEEE INFOCOM
2007-26th IEEE International Conference on Computer Communications.

[31] Hung X. Nguyen and Patrick Thiran. 2007. Network Loss Inference with
Second Order Statistics of End-to-End Flows. In Proceedings of the IEEE Internet

Measurement Conference (IMC).
[32] nsnam. 2023. ns-3 Network Simulator. https://www.nsnam.org/. Accessed

August 2023.
[33] V N Padmanabhan, L Qiu, and H JWang. 2003. Server-based Inference of Internet

Performance. In Proceedings of the IEEE INFOCOMConference.
[34] Teresa Pepe andMarzio Puleri. 2015. Network Tomography: A novel algorithm for

probing path selection. In 2015 IEEE International Conference on Communications
(ICC). 5337–5341. https://doi.org/10.1109/ICC.2015.7249172

[35] Yan Qiao, Jun Jiao, Yuan Rao, and HuiminMa. 2016. Adaptive Path Selection for
Link Loss Inference in Network Tomography Applications. PLOS ONE 11, 10 (10
2016), 1–21. https://doi.org/10.1371/journal.pone.0163706

[36] D. Rubenstein, J. Kurose, and D. Towsley. 2002. Detecting shared congestion of
flows via end-to-end measurement. IEEE/ACM Transactions on Networking 10,
3 (2002), 381–395. https://doi.org/10.1109/TNET.2002.1012369

[37] H H Song, L Qiu, and Y Zhang. 2006. NetQuest: A Flexible Framework for Large-
Scale Network Measurement. In Proceedings of the ACM SIGMETRICS Conference.

[38] Lizhuang Tan, Wei Su, Wei Zhang, Jianhui Lv, Zhenyi Zhang, Jingying Miao,
Xiaoxi Liu, and Na Li. 2021. In-band network telemetry: A survey. Computer
Networks 186 (2021), 107763.

[39] MukarramBinTariq,MurtazaMotiwala, Nick Feamster, andMostafaAmmar. 2008.
Detecting Network Neutrality Violations with Causal Inference. In Proceedings
of the ACM CoNEXT Conference.

[40] VOXMEDIA. 2023. Trump’s FCC has revealed plans to wipe out net neutrality.
https://www.vox.com/2017/11/21/16679114/fcc-ajit-pai-net-neutrality-rules-
donald-trump. Accessed August 2023.

[41] Udi Weinsberg, Augustin Soule, and Laurent Massoulie. 2011. Inferring Traffic
Shaping and Policy Parameters using End Host Measurements. In Proceedings
of the IEEE INFOCOMMini-Conference.

[42] RonaldW.Wolff. 1982. Poisson Arrivals See Time Averages. Operations Research
30, 2 (1982), 223–231. http://www.jstor.org/stable/170165

[43] Ying Zhang, Zhuoqing Morley Mao, and Ming Zhang. 2007. Detecting Traffic
Differentiation in Backbone ISPs with NetPolice. In Proceedings of the ACM
Internet Measurement Conference (IMC).

[44] Ying Zhang, Z. Morley Mao, andMing Zhang. 2008. Ascertaining the Reality of
Network Neutrality Violation in Backbone ISPs. In Proceedings of the ACM Hot
Topic in Networks (HotNets).

[45] Zhiyong Zhang, Ovidiu Mara, and Katerina Argyraki. 2014. Network Neutrality
Inference. In Proceedings of the ACM SIGCOMMConference.

A ETHICS
This work does not raise any ethical issues: the only user data that
we use is already publicly available through theWeHeproject, which
is gathered with informed consent, and contains no user identifiers.

B INTERMEDIATEALGORITHMS
We list the pseudo code of the intermediate algorithms described in
Section 4.3.

Algorithm 2 BinLossTomo
Input: Packet-loss measurements (𝑀1,𝑀2) ,

Interval size 𝜎 ,
Loss threshold 𝜏

Output: Link performance (𝑥𝑐 ,𝑥1,𝑥2)
1: (LostPkts1,TxedPkts1,LostPkts2,TxedPkts2)←

CreateTimeSeries((𝑀1,𝑀2) , 𝜎)
2: for 𝑡 ∈ 0..𝑇 −1 do
3: for 𝑖 ∈ 1,2 do
4: LossStatus𝑖 [𝑡]← LostPkts𝑖 [𝑡]

TxedPkts𝑖 [𝑡] >𝜏

5: end for
6: end for
7: (𝑦1,𝑦2)←

(
Σ𝑡 LossStatus1 [𝑡]

𝑇
,
Σ𝑡 LossStatus2 [𝑡]

𝑇

)
8: 𝑦12← Σ𝑡 LossStatus1 [𝑡]ANDLossStatus2 [𝑡]

𝑇

9: return 𝑥𝑐 =
𝑦1𝑦2
𝑦12

,𝑥1=
𝑦12
𝑦2

,𝑥2=
𝑦12
𝑦1

https://doi.org/10.1145/1159913.1159940
https://scapy.readthedocs.io/en/latest/api/scapy.html
https://www.caida.org/catalog/datasets/passive_dataset/
https://doi.org/10.1214/088342304000000422
https://doi.org/10.1145/1452335.1452343
https://www.t-mobile.com/support/plans-features/data-maximizer-for-prepaid-plans
https://www.t-mobile.com/support/plans-features/data-maximizer-for-prepaid-plans
https://www.measurementlab.net/
https://measurementlab.net/tests/wehe
https://man7.org/linux/man-pages/man8/tc-mirred.8.html
https://man7.org/linux/man-pages/man8/tc-mirred.8.html
https://man7.org/linux/man-pages/man8/tc-tbf.8.html
https://man7.org/linux/man-pages/man8/tc-tbf.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://measurementlab.net/tests/traceroute
https://www.juniper.net/documentation/us/en/software/junos/security-services/topics/ref/statement/burst-size-rate-limiting.html
https://www.juniper.net/documentation/us/en/software/junos/security-services/topics/ref/statement/burst-size-rate-limiting.html
https://www.juniper.net/documentation/us/en/software/junos/security-services/topics/ref/statement/burst-size-rate-limiting.html
https://www.nsnam.org/
https://doi.org/10.1109/ICC.2015.7249172
https://doi.org/10.1371/journal.pone.0163706
https://doi.org/10.1109/TNET.2002.1012369
https://www.vox.com/2017/11/21/16679114/fcc-ajit-pai-net-neutrality-rules-donald-trump
https://www.vox.com/2017/11/21/16679114/fcc-ajit-pai-net-neutrality-rules-donald-trump
http://www.jstor.org/stable/170165

Localizing Traffic Differentiation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

BinLossTomo (Alg. 2) is the state-of-the-art tomography algo-
rithm described in Section 2.2. It takes as input packet-loss measure-
ments of𝑝1 and𝑝2 (collected according to Section 3.4), interval size𝜎 ,
and loss threshold 𝜏 . The output is the links’ inferred performances
𝑥𝑐 , 𝑥1 and 𝑥2 (see Figure 1).

Algorithm 3 BinLossTomo++
Input: Packet-loss measurements (𝑀1,𝑀2) ,

Interval size 𝜎 ,
Loss threshold 𝜏

Output: True or False

1: (𝑥𝑐 ,𝑥1,𝑥2)← BinLossTomo((𝑀1,𝑀2) , 𝜎 , 𝜏)
2: return (𝑥1>𝑥𝑐) AND (𝑥2>𝑥𝑐)

BinLossTomo++ (Alg. 3) is our first intermediate algorithm in Sec-
tion 4.3. It uses the output of BinLossTomo to check if the common
link’s performance (𝑥𝑐) is worse than the performance of both non-
common links (𝑥1 and 𝑥2). If yes, the output is a common bottleneck;
otherwise, no evidence.

Algorithm 4 BinLossTomoNoParams
Input: Packet-loss measurements (𝑀1,𝑀2) ,
Output: True or False

1: S← sequence of interval sizes
2: T← sequence of loss thresholds
3: for 𝜎 ∈ S do
4: for 𝜏 ∈ T do
5: (𝑥𝑐 ,𝑥1,𝑥2)← BinLossTomo((𝑀1,𝑀2) , 𝜎 , 𝜏)
6: Δ1 [𝜏] [𝜎]←𝑥1−𝑥𝑐 ; Δ2 [𝜏] [𝜎]←𝑥2−𝑥𝑐
7: end for
8: end for
9: return (Avg𝜎,𝜏 (Δ1 [𝜏] [𝜎]) >0) AND (Avg𝜎,𝜏 (Δ2 [𝜏] [𝜎]) >0)

BinLossTomoNoParams (Alg. 4) is our second intermediate algo-
rithm. Given the packet-loss measurements of 𝑝1 and 𝑝2, it infers a
sequence of interval sizesS and loss thresholds T . Then, it compute
Avg𝜎,𝜏 (Δ1 [𝜏] [𝜎]) and Avg𝜎,𝜏 (Δ2 [𝜏] [𝜎]): the average gap between
the non-common link performance 𝑥1 (resp. 𝑥2) and the common
link performance 𝑥𝑐 , across all the combinations ofS and T . If both
gaps are positive, it outputs a common bottleneck; otherwise, there
is no evidence.

C ADDITIONAL EVALUATION INFORMATION
C.1 Rate-Limiter Implementation
For the simulation experiments (§6.3), the rate-limiter is imple-
mented in the ns-3 network simulator. It consists of three main
components:

• A classifier: classifies incoming flows into 2 fictitious traffic
classes according to theDSCP (differentiated services code point)
field of the IP header. Those with dscp=1 experiences differen-
tiation, while others doesn’t. Packets that belongs to the original
WeHe measurement traces are assigned dscp=1. To simulate col-
lective per-application/per-service throttling (scenario (b) in §4),
some of the background TCP flows (or UDP packets if the mea-
surement traffic was UDP) are randomly assigned a dscp=1; this
way they are throttled with the original traces. The remaining
traffic uses the default dscp=0 value.
• Two queues: which uses ns-3’s queuing disciplines. The first han-
dles the default traffic which does not experience differentiation
(i.e., dscp=0); it uses simple FIFO (First-In First-Out) policy. The
second applies the TBF (token bucket filter) on flows that should
experience differentiation (i.e., dscp=1).
• A forwarding scheduler: packets are pushed from the FIFO and
TBF queues to the next pipeline in a round-robin manner.

For the wide-area testbed experiments (§6.2), the rate-limiter re-
lies on the Linux’s Traffic Control [27] tool. In particular, it uses
tc-mirred [25] to direct the desired incoming traffic to an ifb (In-
termediate Functional Block) interface with an attached TBF (con-
figured using [26]).

In both scenarios, the rate-limiter is configured following the
guidelines offered by Juniper Networks [29] and the tc-tbf docu-
mentation [26]. In details, the TBF parameters are set as follows: the
peakrate is set to 0 since we are not interested in perfect millisecond
timescale shaping; the rate is set to the desired throttling rate that the
differentiated traffic class should experience; and the burst, which is
the size of the token bucket, is set to rate×RTT.We chose 1-RTT for
the allowable burst time to guarantee that the desired policing rate
will be achieved (on average) during the experiment. Finally, the limit
– which is the TBF queue size – is set based on the desired average
delay the differentiated traffic class should experience waiting for
tokens to become available.

C.2 Loss/DelayWeHeMeasurements
Figure 5 shows boxplots of the average retransmission rate and
queuing delay collected by the original replays from pastWeHe tests
(the gray boxplots). We obtained these as follows: We downloaded 1
year’s (Sep.1 2022 to 2023) worth of WeHe data and identified all the
tests that detected trafficdifferentiation. Fromthese,wekept only the
oneswhere the bit-inverted trace experienced 0 loss (tomaximize the
chance that any retransmissions experienced by the original trace
were due to traffic differentiation, not general congestion). For each
test, we estimated the average queuing delay experienced by each
trace as the averageminus theminimumRTT; then,we estimated the
average queuing delay experienced by the original trace due to traffic
differentiation, by subtracting the averagequeuingdelay experienced
by the bit-inverted trace from that experienced by the original trace.

	Abstract
	1 Introduction
	2 Background
	2.1 WeHe and Traffic Differentiation
	2.2 Network Performance Tomography

	3 Our System
	3.1 Overview and Rationale
	3.2 Main Limitations
	3.3 Topology Construction
	3.4 Simultaneous Replay

	4 Common Bottleneck Detection
	4.1 Throughput Comparison
	4.2 Loss Trend Correlation
	4.3 Design Evolution

	5 Evaluation in the Wild
	6 Evaluation via Em/Simulation
	6.1 Experimental Setup
	6.2 Wide-area Testbed with Emulated Rate-Limiter
	6.3 Simulations (Limit Exploration)

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Ethics
	B Intermediate Algorithms
	C Additional Evaluation Information
	C.1 Rate-Limiter Implementation
	C.2 Loss/Delay WeHe Measurements

